
MGMT 675

AI-ASSISTED FINANCIAL ANALYSIS
1 / 29

TREES, FORESTS, AND NETS

2 / 29

OUTLINE
Decision tree

Random forests

Gradient boosting

Neural networks

3 / 29

CONCEPTS FROM LAST CLASS
Train and test

R-squared (score)

Underfitting and overfitting

Hyperparameters

Cross validation

Scaling and pipelines

4 / 29

HOW DECISION TREES WORK

5 / 29

Start with the estimate for all observations.

Split into two subsets based on one variable and one
threshold. All observations below the threshold go into
one group. All above go into another.

Prediction for each group is the group mean of the target
variable. Calculate MSE over both groups.

Choice of variable and threshold on which to split was
based on minimizing MSE.

Split each subset into further subsets and continue.

=ŷ ȳ

6 / 29

EXAMPLE OF DECISION TREE SPLITTING

7 / 29

ANOTHER EXAMPLE
Ask Julius to read mldata.xlsx.

Ask Julius to fit a decision tree regressor with
max_depth=2 to predict “continuous” from x1 through
x100.

Ask Julius to plot the tree.

Ask Julius to set x to be an array of 100 standard normals.
Ask Julius to show x[:10] and ask Julius what the tree
predicts for x.

Ask Julius to use max_depth=3 and plot the tree.

8 / 29

RANDOM FOREST

9 / 29

FORESTS
A forest is multiple trees.

For any observation - old or new - each tree makes a
prediction.

Average the predictions to get the final prediction.

10 / 29

GENERATING RANDOM FORESTS
A random forest is created by generating random datasets
and fitting a tree to each.

A random dataset is generated by randomly drawing rows
from the original dataset.

Default in scikit-learn is to draw with replacement as
many rows as in the original and then drop duplicates.

11 / 29

EXAMPLE
Ask Julius to fit random forest regression to predict
“continuous” from x1 through x100 with n_estimators=2
and max_depth=2.

Ask Julius to plot both trees.

Ask Julius what the random forest predicts for x.

12 / 29

A MORE REALISTIC EXAMPLE
Ask Julius to fit a random forest regression to predict
“continuous” from x1 through x100 (let Julius choose
n_estimators and max_depth - will probably use defaults).

Ask Julius what the score is on the training and test data.

13 / 29

IMPORTANT HYPERPARAMETERS
How much splitting to do

Examples:

max_depth = 3 means split 3 times (leaves)

min_samples_split = = 50 means don’t split groups
smaller than 50

min_samples_leaf = 50 means don’t create groups
smaller than 50

2
3

14 / 29

OTHER IMPORTANT HYPERPARAMETERS
How to split

criterion (squared error, absolute error, …). Absolute
error is less influenced by outlier values for the target
variable.

max_features: Randomly choose n features at each split
and split on one of them. Small max_features generates
more variation in the trees.

Number of trees (n_estimators)

15 / 29

EXAMPLE
Ask Julius to use GridSearchCV to find the best
max_depth in [2, 4, 6, 8, 10]

Ask what the scores are on the training and test data.

Ask Julius to plot the test data predictions against x1 in
the test data.

Ask Julius to tell you the feature importances.

16 / 29

ANOTHER EXAMPLE
Ask Julius to get the Boston house price data from
sklearn.

Build a random forest model to predict MEDV using the
other variables.

GridSearchCV for max_depth

Get score on test data

Get feature importances

17 / 29

BOOSTING

18 / 29

HOW GRADIENT BOOSTING WORKS
Fit a decision tree.

Look at its errors. Fit a new decision tree to predict the
errors.

New prediction is original plus a fraction of the prediction
of original’s error (fraction = learning rate).

Look at the errors of the new predictions. Fit a new
decision tree to predict these errors.

Continue …

19 / 29

KEY HYPERPARAMETERS
Same as random forest

Plus learning rate

20 / 29

EXTREME GRADIENT BOOSTING (XGBOOST)
Ask Julius to explain xgboost

Ask Julius to fit xgboost to predict “continuous” from x1
through x100 in mldata.xlsx.

Ask Julius to use GridSearchCV to find the best
max_depth and learning rate.

21 / 29

Ask Julius

what the score is on the test data

what the feature importances are

to plot the actual and predicted target values in the test
data against x1 in the test data.

22 / 29

NEURAL NETWORKS

23 / 29

EXAMPLE OF MULTI-LAYER PERCEPTRON

24 / 29

RECTIFIED LINEAR UNITS
The usual function for the neurons (except in the last
layer) is

Parameters (called bias) and (called weights)
are different for different neurons.

This function is called a rectified linear unit (ReLU).

y = max(0, b + + ⋯ +)w1x1 wnxn

b , …w1 wn

25 / 29

ANALOGY TO NEURONS FIRING
If then only when are large enough.

A neuron fires when it is sufficiently stimulated by signals
from other neurons (in prior layer).

> 0wi y > 0 xi

26 / 29

OUTPUT FUNCTION
The output doesn’t have a truncation, so it can be
negative.

For regression problems, it is linear:

z = b + + ⋯ +w1y1 wnyn

27 / 29

KEY HYPERPARAMETERS
Number of hidden layers

Number of neurons in each layer

Activation function

Also, choice of optimizer can matter

28 / 29

EXAMPLE
Ask Julius to fit a multi-layer perceptron to predict
“continuous” from x1 through x100 in mldata.xlsx.

Try different hidden layer sizes. For example (64, 32)
means two hidden layers with 64 neurons in the first and
32 in the second.

You can use GridSearchCV to search over different hidden
layer sizes - e.g. (8,), (4, 4, 4), etc.

29 / 29

